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A Multiphase Learning Approach for Automated Reasoning

On-line
Control Routing
|dentification Scheduling
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Supervised Learning: Reinforcement Learning:
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The same performance metric is optimized during both phases!
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Introduction

e Stringent operational requirements introduce
Complexity
Nonlinearity
Uncertainty

e C(Classica/neural synthesis of control systems

A-priori knowledge
Adaptive neural networks

e Dual heuristic programming adaptive critic architecture:

Action network takes immediate control action

Critic network estimates projected cost



Neural Network Control of Aircraft

Full envelope control

Multiphase learning
Initialization: match linear controllers exactly off-line
. full-scale ssimulations, testing, or operation

On-line learning improves performance w.r.t. linear controllers:
Differences between actual and assumed models
Nonlinear effects not captured in linearizations

Potential applications:

Incorporate pilot's knowledge into controller a priori
Uninhabited air vehicles control

Aerobatic flight control
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Design Approach
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Linear Control Design

Linearizations: Flight envelope and design points:
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Proportional-Integral Linear Controller

Closed-loop stability: x = XX, -0, u,y- 0
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Proportional-Integral Neural Network Controller
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Comparison of Initialized Neural Network and Linear Controllers
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Proportional-Integral Neural Network Controller
On-line Adaptation
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On-line Adaptation with Bounded Control Inputs

Introduce exponential cost in the control-weighting matrix R:

2
* For bounded throttle, 0 < oT(%) < 1,
Rt =927 :
~4
= For bounded stabilator, aileron, and rudder or (%)

deflections, e.g., -0.6 < drad) < 0.6,
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Adaptive Critic Implementation:
Action Network On-line Training

Train action network, at timet, holding the critic parameters fixed
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Adaptive Critic Implementation:
Critic Network On-line Training

Train critic network, at timet, holding the action parameters fixed
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Action/Critic Network On-line Learning, at Time t

The (action/critic) network must meet its target,

_ NN Target [ min E = minlg*
Generation i e [ W W ‘ ‘
+

{Xa(t)}_
a - [ E = Network performance

_, < € = Network error

_ W = Network weights

Modified Resilient Backpropagation (RProp) minimizes E w.r.t. w:

w(t) = w,
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Comparison of Adaptive Critic and Initialized Neural Control:
Aircraft Response During a Coupled Maneuver
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Comparison of Adaptive Critic and Initialized Neural Control:
Aircraft Response During a Large-Angle Maneuver

Aircraft Response, (H,, V) = (7 Km, 160 m/s)
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Comparison of Adaptive Critic and Initialized Neural Control
During a Large-Angle Maneuver

Control History, (H, V) = (7 Km, 160 m/s)
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Initialized Neural Controller Performance
in the Presence of Control Failures

Control Failures:

e Ol=0,0<t<15secC
e 5=0,5<t<10sec
*R=0,5<t<10sec
e OR=-34°t<50rt>10sec
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Comparison of Adaptive Critic and Initialized Neural Control:
Aircraft Response in the Presence of Control Failures
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Adaptive Critic Neural Control During a
Previously-Encountered Maneuver

Aircraft Response, (H,, V) = (3 Km, 100 m/s)
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Summary of Results

L earning control system:

< Improves global performance

< Preserves prior knowledge

< Suspends and resumes adaptation, as appropriate

Achievements:

« Systematic approach for designing adaptive control systems
< Framework for investigating neural approximation properties
< Innovative (off-line and on-line) training techniques

Other Potential Applications for Adaptive Neural Control:

Air-traffic management, reconfiguring hardware (raw chips),
process control, criminal profiling, image processing, ...
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